Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conjugated microporous polymers (CMPs) are porous organic materials that display (semi)conducting behavior due to their highly π-conjugated structures, making them promising next-generation materials for applications requiring both electrical conductivity and porosity. Currently, most CMPs and related porous aromatic frameworks (PAFs) are prepared using expensive transition metals (e.g., Pd), significantly increasing the costs associated with their synthesis. Lewis acid-mediated cyclotrimerization reactions of methyl ketones and nitriles represent promising and green alternative methods for CMP and PAF synthesis. Herein, we demonstrate that the generality of the solvent-free cyclotrimerization reactions is significantly improved by using ZnBr2 instead of ZnCl2 as the ionothermal medium. Specifically, we show that 1,4-diacetylbenzene (DAB), 4,4′-diacetylbiphenyl (DABP), 2,7-diacetylfluorene (DAF), 1,3,5-triacetylbenzene (TAB), tetrakis(4-acetylphenyl)methane (TAPM), and 1,4-dicyanobenzene (DCNB) can be polymerized in molten ZnBr2 to produce highly conjugated and microporous materials, as confirmed by 77 K N2 adsorption measurements, IR, and solid-state NMR. These findings support that ZnBr2 is an excellent Lewis acid mediator and medium for the ionothermal synthesis of porous organic materials.more » « less
-
Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases.more » « less
-
Organic electrode materials offer unique opportunities to utilize ion-electrode interactions to develop diverse, versatile, and high-performing secondary batteries, particularly for applications requiring high power densities. However, a lack of well-defined structure–property relationships for redox-active organic materials restricts the advancement of the field. Herein, we investigate a family of diimide-based polymer materials with several charge-compensating ions (Li + , Na + , K + ) in order to systematically probe how redox-active moiety, ion, and polymer flexibility dictate their thermodynamic and kinetic properties. When favorable ion-electrode interactions are employed ( e.g. , soft K + anions with soft perylenediimide dianions), the resulting batteries demonstrate increased working potentials and improved cycling stabilities. Further, for all polymers examined herein, we demonstrate that K + accesses the highest percentage of redox-active groups due to its small solvation shell/energy. Through crown ether experiments, cyclic voltammetry, and activation energy measurements, we provide insights into the charge compensation mechanisms of three different polymer structures and rationalize these findings in terms of the differing degrees of improvements observed when cycling with K + . Critically, we find that the most flexible polymer enables access to the highest fraction of active sites due to the small activation energy barrier during charge/discharge. These results suggest that improved capacities may be accessible by employing more flexible structures. Overall, our in-depth structure–activity investigation demonstrates how variables such as polymer structure and cation can be used to optimize battery performance and enable the realization of novel battery chemistries.more » « less
-
Abstract Covalent organic frameworks linked by carbon‐carbon double bonds (C=C COFs) are an emerging class of crystalline, porous, and conjugated polymeric materials with potential applications in organic electronics, photocatalysis, and energy storage. Despite the rapidly growing interest in sp2carbon‐conjugated COFs, only a small number of closely related condensation reactions have been successfully employed for their synthesis to date. Herein, we report the first example of a C=C COF, CORN‐COF‐1 (CORN=Cornell University), prepared byN‐heterocyclic carbene (NHC) dimerization. In‐depth characterization reveals that CORN‐COF‐1 possesses a two‐dimensional layered structure and hexagonal guest‐accessible pores decorated with a high density of strongly reducing tetraazafulvalene linkages. Exposure of CORN‐COF‐1 to tetracyanoethylene (TCNE,E1/2=0.13 V and −0.87 V vs. SCE) oxidizes the COF and encapsulates the radical anion TCNE⋅−and the dianion TCNE2−as guest molecules, as confirmed by spectroscopic and magnetic analysis. Notably, the reactive TCNE⋅−radical anion, which generally dimerizes in the solid state, is uniquely stabilized within the pores of CORN‐COF‐1. Overall, our findings broaden the toolbox of reactions available for the synthesis of redox‐active C=C COFs, paving the way for the design of novel materials.more » « less
-
Hydrogen sulfide (H 2 S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H 2 S is hindered by its corrosive and toxic nature. In addition, small molecule H 2 S donors often generate other reactive and sulfur-containing species upon H 2 S release, leading to unwanted side effects. Here, we demonstrate that H 2 S release from biocompatible porous solids, namely metal–organic frameworks (MOFs), is a promising alternative strategy for H 2 S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H 2 S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H 2 S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H 2 S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H 2 S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H 2 S. Overall, our findings suggest that H 2 S-loaded MOFs represent a new family of easily-handled solid sources of H 2 S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery.more » « less
An official website of the United States government
